MLZ ist eine Kooperation aus:

Technische Universität München> Technische Universität MünchenHelmholtz-Zentrum Hereon> Helmholtz-Zentrum Hereon
Forschungszentrum Jülich> Forschungszentrum Jülich

MLZ ist Mitglied in:

LENS> LENSERF-AISBL> ERF-AISBL

MLZ in den sozialen Medien:

Logo

MLZ

Lichtenbergstr.1
85748 Garching

31.03.2022

Weniger Abfall trotz niedrigerer Anreicherung

Tobias Chemnitz an Mo-99 Testanlage Tobias Chemnitz an Mo-99 Testanlage Dr. Tobias Chemnitz an der Testanlage für die Mo-99-Produktion am FRM II auf dem Forschungscampus Garching der Technischen Universität München. © Reiner Müller, FRM II / TUM

Dr. Tobias Chemnitz an der Testanlage für die Mo-99-Produktion am FRM II auf dem Forschungscampus Garching der Technischen Universität München. © Reiner Müller, FRM II / TUM

Die Nuklearmedizin verwendet Technetium-99m unter anderem zur Tumordiagnostik. Mit weltweit über 30 Millionen Anwendungen pro Jahr ist es das am häufigsten eingesetzte Radioisotop. Der Ausgangsstoff, Molybdän-99, wird vor allem in Forschungsreaktoren hergestellt. Eine Studie an der Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) der Technischen Universität München (TUM) zeigt nun, wie der bei der Verarbeitung bis zum Arzneimittel entstehende radioaktive Müll signifikant reduziert werden könnte.

Über 85 Prozent aller nuklearmedizinisch-diagnostischen Untersuchungen nutzen Technetium-99m (Tc-99m). Allein in Deutschland werden pro Jahr über 3 Millionen Dosen eingesetzt. Gekoppelt an geeignete organische Moleküle wird das Technetium vom Blut im Körper verteilt und reichert sich beispielsweise in Tumoren an. Wenn es dort zerfällt, verrät die freigesetzte Strahlung die genaue Position des Tumors.

Hergestellt wird Technetium-99m, indem Uranplättchen, sogenannte Targets, mit einem hohen Neutronenfluss bestrahlt werden, wie er praktisch nur an Forschungsreaktoren verfügbar ist. Zunächst entsteht so aus Uran-235 Molybdän-99 (Mo-99), das mit einer Halbwertszeit von 66 Stunden zu Tc-99m zerfällt. Mit einer Halbwertszeit von sechs Stunden wandelt sich letzteres in Technetium-99 um und setzt dabei die für die Diagnostik benötigte Gammastrahlung frei.

Umo niederfluss 3 Umo niederfluss 3 Ein Uran-Molybdän-Testtarget während der Fluorierung mit Stickstoff-Trifluorid, verdünnt mit Argon. Bei höheren Konzentrationen ist die Reaktion so stark, dass das Target-Plättchen glüht. © Dr. Tobias Chemnitz

Ein Uran-Molybdän-Testtarget während der Fluorierung mit Stickstoff-Trifluorid, verdünnt mit Argon. Bei höheren Konzentrationen ist die Reaktion so stark, dass das Target-Plättchen glüht. © Dr. Tobias Chemnitz

Mehr Abfall durch niedrig angereichertes Uran

Auch im medizinischen Bereich fordern aktuelle politische Bestrebungen das Ersetzen von hoch- durch niedrig angereichertes Uran. Am FRM II wird deshalb die im Bau befindliche Mo-99 Bestrahlungsanlage für Targets mit niedrig angereichertem Uran konzipiert.

„Dabei ergibt sich allerdings ein gravierendes Problem: Je geringer die Uranplättchen angereichert sind, desto geringer ist auch die spezifische Ausbeute an Mo-99 bei der Bestrahlung“, so Dr. Tobias Chemnitz, Instrumentverantwortlicher bei der medizinischen Bestrahlungsanlage MEDAPP am FRM II.

Um den Weltbedarf an Tc-99m decken zu können, müssen je nach eingesetzter Technik mindestens doppelt so viele Uranplättchen bestrahlt und verarbeitet werden, wodurch auch ein entsprechend höheres Abfallvolumen anfällt. Deshalb hat sich Chemnitz in seiner Doktorarbeit an der Technischen Universität München mit dem Problem beschäftigt.

Neues Verfahren vermeidet bis zu 15.000 Liter flüssigen radioaktiven Müll

Im fertig bestrahlten Plättchen ist Mo-99 nur zu etwa 0,1 Prozent enthalten. Damit es ausreichend rein für medizinische Anwendungen ist, muss es sorgfältig vom restlichen Material getrennt werden.

Dafür existieren derzeit zwei gebräuchliche Standardverfahren auf Basis eines sauren und eines alkalischen Prozesses. Bei der alkalischen Variante wird das gesamte Target zunächst mit Natronlauge behandelt. Dabei geht Mo-99 bevorzugt in Lösung – Uran hingegen ist hierin unlöslich und verbleibt als Feststoff. Die Abtrennung der verbleibenden Spaltprodukte aus der wässrigen Lösung geschieht dann durch aufwändige chemische Trennverfahren.

Werden nun niedrigangereicherte statt hochangereicherter Targets verwendet, verdoppelt sich bei gleicher Molybdänausbeute das Volumen der entstehenden radioaktiven Abfälle auf ein jährliches Volumen von bis zu 15.000 Litern wässrigem, mittelradioaktivem Abfall. Dieser muss, um endlagerfähig zu sein, noch zementiert werden, so dass im Rahmen der Mo-99 Produktion am Ende pro Jahr weltweit radioaktiver Müll mit einem Volumen von 375.000 Litern entsteht.

Umo hochfluss 3 Umo hochfluss 3 Ein Uran-Molybdän-Testtarget während der Fluorierung mit Stickstoff-Trifluorid, verdünnt mit Argon. Bei höheren Konzentrationen ist die Reaktion so stark, dass das Target-Plättchen glüht, wie im Bild zu sehen ist. © Dr. Tobias Chemnitz

Ein Uran-Molybdän-Testtarget während der Fluorierung mit Stickstoff-Trifluorid, verdünnt mit Argon. Bei höheren Konzentrationen ist die Reaktion so stark, dass das Target-Plättchen glüht, wie im Bild zu sehen ist. © Dr. Tobias Chemnitz

Die Lösung: Wasser weglassen

Um dieser Problematik entgegen zu wirken, entwickelten Chemnitz und seine Kollegin Riane Stene ein neues Verfahren zur Extraktion von Mo-99 ohne den Einsatz wässriger Chemie.

In Zusammenarbeit mit der Arbeitsgruppe Fluorchemie der Philipps Universität Marburg entwickelten sie eine Anlage, in der sie Uran-Molybdän-Testplättchen in einem Plasma mit Stickstoff-Trifluorid zur Reaktion brachten. Die Plättchen wiesen dabei bereits denselben Molybdängehalt auf, wie er auch in tatsächlich bestrahlten Targets vorliegen würde.

Anschließend trennten sie über eine lichtgesteuerte Reaktion das unerwünschte, überschüssige Uran vom Molybdän. Die Trennung der beiden Elemente ist dabei ähnlich effizient wie die oben beschriebene nasschemische Abtrennung, produziert aber im Gegensatz dazu keinen wässrigen Abfall.

Nur sechs große Forschungsreaktoren produzieren Molybdän-99

„Derzeit gibt es weltweit sechs große Bestrahlungsanlagen, die Mo-99 produzieren. Von diesen Forschungsreaktoren sind vier bereits über 40 Jahre alt, was zu unvorhergesehenen Reparaturen und damit einhergehenden Abschaltungen führen kann, wie in der jüngeren Vergangenheit bereits geschehen. Daher sind wir stolz darauf, dass wir hier am FRM II zusammen mit dem französischen Reaktor Jules-Horowitz zukünftig in der Lage sein werden, den europäischen Bedarf an Mo-99 sicherzustellen“, so Dr. Chemnitz.

Die TUM hat das Verfahren zum Patent angemeldet. Auch wenn noch weitere Entwicklungsarbeiten notwendig sind, ist Chemnitz zuversichtlich, dass es mittelfristig eine nachhaltige Alternative zu den etablierten Verfahren darstellen wird.

MLZ ist eine Kooperation aus:

Technische Universität München> Technische Universität MünchenHelmholtz-Zentrum Hereon> Helmholtz-Zentrum Hereon
Forschungszentrum Jülich> Forschungszentrum Jülich

MLZ ist Mitglied in:

LENS> LENSERF-AISBL> ERF-AISBL

MLZ in den sozialen Medien: