MLZ is a cooperation between:

Technische Universität München> Technische Universität MünchenHelmholtz-Zentrum Geesthacht> Helmholtz-Zentrum GeesthachtForschungszentrum Jülich> Forschungszentrum Jülich

MLZ ist Mitglied in:

LENS> LENSERF-AISBL> ERF-AISBL

MLZ in den sozialen Medien:

Die MLZ-App – jetzt hier verfügbar! (Android)

MLZ App> MLZ App
Logo

MLZ

Lichtenbergstr.1
85748 Garching

» zurück

29.07.2020

So entstehen Stein-Eisen Meteoriten

Hochdruckpresse SAPHiR löst Rätsel des Sonnensystems

Nicolas Walte SAPHiR Nicolas Walte SAPHiR Nicolas Walte am Instrument SAPHiR. © Wenzel Schürmann / FRM II, TUM

Nicolas Walte am Instrument SAPHiR. © Wenzel Schürmann / FRM II, TUM

Meteoriten ermöglichen uns Einblicke in die frühe Entwicklung des Sonnensystems. Mithilfe des Instruments SAPHiR der Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) der Technischen Universität München (TUM) ist es einem Wissenschaftsteam erstmals gelungen, die Entstehung von Stein-Eisen Meteoriten, sogenannten Pallasiten, vollständig experimentell zu simulieren.

„Pallasite sind die optisch schönsten und ungewöhnlichsten Meteoriten“, zeigt sich Dr. Nicolas Walte, der Erstautor der Studie, begeistert. Sie gehören zur Gruppe der Stein-Eisen Meteoriten und bestehen aus grünen Olivinkristallen, eingebettet in Nickel und Eisen. Trotz jahrzehntelanger Forschung war ihre genaue Herkunft jedoch bisher umstritten.

Um diese Frage zu klären, untersuchte Dr. Nicolas Walte, Instrumentenwissenschaftler am Heinz Maier-Leibnitz Zentrum (MLZ) in Garching, gemeinsam mit Kolleginnen und Kollegen des Bayerischen Geoinstituts der Uni Bayreuth sowie der Royal Holloway University of London den Bildungsprozess von Pallasiten. Erstmalig gelang es ihnen dabei, Strukturen aller Pallasitarten experimentell herzustellen.

SAPHiR von innen SAPHiR von innen Blick in das Innere von SAPHiR. © Wenzel Schürmann / FRM II, TUM

Blick in das Innere von SAPHiR. © Wenzel Schürmann / FRM II, TUM

Instrument SAPHiR im Einsatz

Für seine Experimente nutzte das Team die Hochdruckpresse SAPHiR, die derzeit unter der Leitung von Prof. Hans Keppler vom Bayerischen Geoinstitut am MLZ aufgebaut wird. Noch erhält es zwar keine Neutronen vom FRM II, es ist jedoch bereits möglich, Experimente unter hohem Druck und hoher Temperatur durchzuführen.

„Mit einer Presskraft von 2400 Tonnen kann SAPHiR eine Probe auf einen Druck von 15 Gigapascal (GPa) und über 2000 °C bringen“, erläutert Walte. „Das ist mehr als das Doppelte des Drucks, der benötigt wird, um Graphit in Diamant verwandeln.“ Um die Kollision zweier Himmelskörper zu simulieren, reichte dem Forschungsteam ein Druck von einem GPa bei 1300°C.

Pallasit Entstehung Pallasit Entstehung Einschlag eines kleinen Asteroiden auf einen größeren Asteroiden. Während des Einschlags vermischt sich geschmolzenes Eisen aus dem Kern des einschlagenden Körpers mit dem olivin-reichen Mantel des Mutterkörpers. © Reiner Müller

Einschlag eines kleinen Asteroiden auf einen größeren Asteroiden. Während des Einschlags vermischt sich geschmolzenes Eisen aus dem Kern des einschlagenden Körpers mit dem olivin-reichen Mantel des Mutterkörpers. © Reiner Müller

Wie entstehen Pallasite?

Bis vor kurzem glaubte man, dass Pallasite aus der Grenze zwischen Eisenkern und Gesteinsmantel von Asteroiden stammen. Einer neueren Theorie zufolge entstehen Pallasite näher an der Oberfläche bei der Kollision mit einem anderen Himmelskörper. Bei dem Einschlag vermischt sich geschmolzenes Eisen aus dem Kern des Projektils mit dem olivinreichen Mantel des Mutterkörpers.

Die durchgeführten Experimente bestätigten jetzt die Einschlagshypothese. Eine weitere Voraussetzung für die Bildung von Pallasiten ist, dass sich Eisenkern und Gesteinsmantel des Asteroiden zuvor teilweise getrennt haben müssen.

Dies geschah kurz nach seiner Entstehung vor etwa 4,5 Milliarden Jahren. In dieser Zeit heizte sich der Asteroid auf, bis die dichteren metallischen Bestandteile aufschmolzen und zum Zentrum des Himmelskörpers absanken.

Die entscheidende Erkenntnis der Studie ist, dass beide Prozesse, die Trennung von Kern und Mantel und der darauf folgende Einschlag eines weiteren Himmelskörpers, für die Entstehung von Pallasiten nötig sind.

Pallasit Scheibe Pallasit Scheibe Pallasit-Scheibe. © Nicolas P. Walte/TUM

Pallasit-Scheibe. © Nicolas P. Walte/TUM

Erkenntnisse über die Entstehung des Sonnensystems

 „Allgemein sind Meteoriten die ältesten direkt zugänglichen Bestandteile des Sonnensystems. Das Alter des Sonnensystems und seine frühe Entstehungsgeschichte kennt man hauptsächlich durch die Untersuchung von Meteoriten“, erklärt Walte.

„Erde und Mond entwickelten, genau wie viele Asteroiden, mehrere Lagen, aus Kern, Mantel und Kruste“, sagt Nicolas Walte. „So schufen die Zusammenballungen von kosmischem Geröll komplexe Welten. Im Fall der Erde hat dies letztendlich die Entstehung von Leben ermöglicht.“

Die Hochdruck-Experimente und der Vergleich mit Pallasiten zeigen wichtige, im frühen Sonnensystem ablaufende Prozesse. Die Experimente des Teams liefern neue Erkenntnisse über die Kollision und die Materialvermischung der beiden Himmelskörper und die darauffolgende schnelle gemeinsame Abkühlung. In zukünftigen Untersuchungen soll dies nun weiter erforscht werden.

Originalpublikation:

Two-stage formation of pallasites and the evolution of their parent bodies revealed by deformation experiments
Nicolas P. Walte, Giulio F. D. Solferino, Gregor J. Golabek, Danielle Silva Souza, Audrey Bouvier
Earth and Planetary Science Letters, Vol. 546, 15 September 2020, 116419 – DOI: 10.1016/j.epsl.2020.116419

Mehr Informationen:

Die Forschungsarbeiten wurden mit Mitteln des Bundesministeriums für Bildung und Forschung (BMBF) unterstützt.

Kontakt:

Dr. Nicolas P. Walte
Technische Universität München
Forschung-Neutronenquelle Heinz Maier-Leibnitz
Instrument SAPHiR
Lichtenbergstr. 1, 85748 Garching
Tel.: 089 / 289-11772
E-Mail: nicolas.walte@frm2.tum.de
Web: https://mlz-garching.de/saphir/de

MLZ is a cooperation between:

Technische Universität München> Technische Universität MünchenHelmholtz-Zentrum Geesthacht> Helmholtz-Zentrum GeesthachtForschungszentrum Jülich> Forschungszentrum Jülich

MLZ ist Mitglied in:

LENS> LENSERF-AISBL> ERF-AISBL

MLZ in den sozialen Medien:

Die MLZ-App – jetzt hier verfügbar! (Android)

MLZ App> MLZ App