MLZ ist eine Kooperation aus:
> Technische Universität München> Helmholtz-Zentrum Hereon > Forschungszentrum JülichMLZ ist Mitglied in:
MLZ in den sozialen Medien:
MLZ
Lichtenbergstr.1
85748 Garching
08.08.2012
Erste Hinweise auf Higgs-Mechanismus in einem Magnet
Forscher gehen davon aus, mit Neutronenstreuexperimenten die typischen Kennzeichen eines Phasenübergangs basierend auf dem Higgs-Mechanismus gefunden zu haben.
Mit Hilfe äußerst sensitiver Neutronstreuexperimente an der Garchinger Außenstelle des Forschungszentrums Jülich, der Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II), konnte ein internationales Forscherteam die charakteristischen Merkmale eines Quanten-Spin-Eises experimentell nachweisen.
Vom britischen Physiker Peter Higgs war zuletzt viel die Rede. Forscher am europäischen Kernforschungszentrum CERN in Genf hatten den mutmaßlichen Nachweis des von ihm in den 1960er-Jahren vorhergesagten Higgs-Bosons bekannt gegeben. Der von ihm vorgeschlagene Higgs-Mechanismus erklärt, wie Elementarteilchen zu ihrer Masse kommen – und spielt auch jenseits der Elementarteilchenphysik eine Rolle. Ein internationales Forscherteam hat mit Hilfe von Neutronenstreuexperimenten erste Hinweise darauf gefunden, dass eben dieser Mechanismus einen Phasenübergang von exotischen magnetischen Zuständen in Yb2Ti2O7-Kristallen nahe des absoluten Nullpunkts erklären kann. Bei der Abkühlung eines als „Quanten-Spin-Eis” bezeichneten Zustands beobachteten sie zum ersten Mal Anzeichen für den spontanen Austausch mit dem von Higgs vorhergesagten Higgs-Feld in einem Magneten. Die Ergebnisse sind in der renommierten Fachzeitschrift „Nature Communications” nachzulesen.
Phasenübergänge beschreiben, wie ein Material von einem Zustand in einen anderen wechselt. Ein gängiges Beispiel ist das Schmelzen von Eis. Daneben gibt es auch Phasenübergänge von elektronischen und magnetischen Zuständen. Die Magnetisierung von Eisen vollzieht sich beispielsweise unterhalb einer bestimmten, kritischen Temperatur alleine aufgrund der elektromagnetischen Wechselwirkungen zwischen Elektronen und deren magnetischen Momenten, den Spins. Doch nicht alle magnetischen Phasenübergänge lassen sich auf diese Weise erklären. Das zeigen die Ergebnisse eines Teams aus deutschen, taiwanesischen, japanischen und britischen Wissenschaftlern, die erste experimentelle Hinweise auf einen sogenannten Higgs-Übergang in Yb2Ti2O7-Kristallen bei Temperaturen nahe dem absoluten Nullpunkt gefunden haben.
Die Existenz dieses Phasenübergangs war bereits lange bekannt, nicht aber, was dabei genau passiert. Erst Experimente mit polarisierten Neutronen an einer Außenstelle des Forschungszentrums Jülich an der Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) in Garching bei München klärten das Rätsel. Solche Experimente ermöglichen, die magnetische Struktur von Materialien mit atomarer Auflösung zu messen. Die hohe Intensität der Garchinger Neutronenquelle ermöglichte zudem, die schwachen Signale der Probe zu detektieren. Nicht zuletzt konnten dort die Experimente bei den notwendigen tiefen Temperaturen durchgeführt werden.
Die Forscher gehen davon aus, die typischen Kennzeichen eines Phasenübergangs basierend auf dem Higgs-Mechanismus beobachtet zu haben. „Das wäre der unseres Wissens erste Nachweis eines Higgs-Übergangs in einem Magneten”, berichtet Yixi Su, Instrumentwissenschaftler am Jülich Centre for Neutron Science in Garching. Der Higgs-Mechanismus erklärt als zentraler Bestandteil des physikalischen Standardmodells, warum Teilchen – auch Elektronen und Quarks, aus denen sich die Atomkerne zusammensetzen – überhaupt eine Masse haben. Verantwortlich ist das sogenannte Higgs-Feld, das im ganzen Universum gegenwärtig ist. Das Feld selbst entzieht sich der direkten Beobachtung. Aber Elementarteilchen – und auch Quasi-Teilchen wie in diesem Fall – können damit wechselwirken und erhalten dadurch ihre Masse.
Solche quantenmechanischen elektromagnetischen Phänomene genau zu verstehen, ist wesentlich für das Verständnis der modernen Physik. Unter anderem unsere heutige Informationstechnologie basiert darauf. Die Forscher wollen nun Yb2Ti2O7 als Modellsystem nutzen, um interessante Eigenschaften von Quanten-Spin-Flüssigkeiten zu untersuchen. Dabei setzen sie auch weiter auf Neutronenstreuexperimente. “Keine andere Methode ist derzeit sensitiv genug”, so Su.
zur Pressemitteilung des Forschungszentrums Jülich
Originalpublikation:
L.-J. Chang, S. Onoda, Y. Su, Y.-J. Kao, K.-D. Tsuei, Y. Yasui, K. Kakurai & M. R. Lees
Higgs transition from a magnetic Coulomb liquid to a ferromagnet in Yb2Ti2O7
Nature Communications 3: 992 (2012),
DOI: 10.1038/ncomms1989.
MLZ ist eine Kooperation aus:
> Technische Universität München> Helmholtz-Zentrum Hereon > Forschungszentrum JülichMLZ ist Mitglied in:
MLZ in den sozialen Medien: