MLZ is a cooperation between:
MLZ is a member of:
MLZ on social media:
MLZ (eng)
Lichtenbergstr.1
85748 Garching
KWS-2
Small angle scattering diffractometer
KWS-2 [1] represents a classical pinhole SANS instrument where, combining the pinhole mode using different neutron wavelengths and detection distances with the focusing mode using MgF2 lenses, a wide Q-range between 1 × 10-4 and 0.5 Å-1 can be explored.
The instrument is dedicated to high intensity/ wide-Q investigation of mesoscopic structures and structural changes due to rapid kinetic processes in soft condensed matter, chemistry, and biology [2].
The high neutron flux, comparable with that of the world leading SANS instruments, which is supplied by the neutron delivery system (cold source, selector, guides) [3, 4], and the possibility to use large sample area using focussing lenses, enable high intensity and time-resolved studies.
On demand, the instrument resolution can be tuned using the double-disc chopper with adjustable opening slit [5], which allows the variation of the wavelength spread between 2 and 20%. This offers a high flexibility in optimising the instrument performance towards improved characterisation of structural details and accurate beam characteristics (avoid the gravity and chromatic effects while using the lenses).
[1] Radulescu, A. et al., J. Phys. Conf. Series 351, 012026 (2012)
[2] A. Radulescu et al., J. Vis. Exp. 118, e54639 (2016), KWS-2 film
[3] Radulescu, A ., Ioffe, A., Nucl. Inst. Meth. A, 586 , 55 (2008)
[4] Radulescu, A. et al., Nucl. Inst. Meth. A 689, 1 (2012)
[5] A. Radulescu et al., J. Appl. Cryst. 48, 1860 (2015)
Self-assembly of block-copolymers in micellar structures is a widely studied topic at KWS-2. The properties of block-copolymer micelles tuned by changing e.g. solvent quality, temperature, solvent selectivity, block copolymer composition, and molecular weight are investigated thoroughly benefiting from the adjustable instrumental resolution between 2 and 20%.
Another kind of typical application relate to fast structural changes of micellar systems (formation, transformation or chain exchange at equilibrium) or polymer crystallisation which are investigated by time-resolved SANS in the second or sub-second (up to 50 ms) regimes. More recently, the determination and control of the morphological parameters of biocompatible gels and amphiphiles became an important topic of study stimulated by the demands from nanomedicine related to the design of new functional drug delivery vehicles.
Instrument Scientists
Dr. Aurel Radulescu
Phone: +49 (0)89 289-10712
E-Mail: a.radulescu@fz-juelich.de
Dr. Christian Lang
Telefon: +49 (0)89 289-10739
E-Mail: c.lang@fz-juelich.de
Dr. Marie-Sousai Appavou
Phone: +49 (0)89 289-10747
E-Mail: m.s.appavou@fz-juelich.de
KWS-2
Phone: +49 (0)89 289-14326 /-14873
Operated by
Film: Roboter changes samples
Publications
Find the latest publications regarding KWS-2 in our publication database iMPULSE:
Heinz Maier-Leibnitz Zentrum. (2015). KWS-2: Small angle scattering diffractometer. Journal of large-scale research facilities, 1, A29. http://dx.doi.org/10.17815/jlsrf-1-27
For citation please always include the DOI.
Gallery
MLZ is a cooperation between:
MLZ is a member of:
MLZ on social media: