MLZ is a cooperation between:

Technische Universität München> Technische Universität MünchenHelmholtz-Zentrum Geesthacht> Helmholtz-Zentrum GeesthachtForschungszentrum Jülich> Forschungszentrum Jülich
Logo

MLZ

Lichtenbergstr.1
85748 Garching

» zurück

27.07.2016

Exotischer Materiezustand: “Flüssige” Quantenspins bei tiefsten Temperaturen beobachtet

Kristallgitter mit widersprüchlichen Spins Kristallgitter mit widersprüchlichen Spins Ein Ausschnitt aus dem Kristallgitter der Probe verdeutlicht, dass die Spins widersprüchlichen Anforderungen ausgesetzt sind. Die grünen und roten Balken zwischen Gitterplätzen symbolisieren ferromagnetische Wechselwirkungen. Die blauen Balken dagegen die antiferromagnetischen. | © HZB

Ein Ausschnitt aus dem Kristallgitter der Probe verdeutlicht, dass die Spins widersprüchlichen Anforderungen ausgesetzt sind. Die grünen und roten Balken zwischen Gitterplätzen symbolisieren ferromagnetische Wechselwirkungen. Die blauen Balken dagegen die antiferromagnetischen. | © HZB

Ein Team am HZB hat experimentell eine sogenannte Quanten-Spinflüssigkeit in einem Einkristall aus Kalzium-Chrom-Oxid nachgewiesen. Dabei handelt es sich um einen neuartigen Materiezustand. Das Besondere an dieser Entdeckung: Nach gängigen Vorstellungen war das Quantenphänomen in diesem Material gar nicht möglich. Nun liegt eine Erklärung vor. Die Arbeit erweitert das Verständnis von kondensierter Materie und könnte auch für die zukünftige Entwicklung von Quantencomputern von Bedeutung sein. Die Ergebnisse mit Messungen unter anderem am TOFTOF des MLZ sind nun in Nature Physics veröffentlicht.

Es entspricht unserer alltäglichen Erfahrung, dass Materie bei tiefen Temperaturen gefriert und die Atome eine feste, regelmäßige Struktur bilden. Auch in magnetischen Materialien kommen die magnetischen Momente der Elektronen (Spins) bei sinkenden Temperaturen zur Ruhe und richten sich starr aus. Allerdings gibt es seltene Ausnahmen: In sogenannten Quanten-Spinflüssigkeiten bleiben die Elektronenspins selbst bei Temperaturen nahe dem absoluten Nullpunkt beweglich. Nach bisherigem Verständnis sind dafür antiferromagnetische Wechselwirkungen zwischen den Spins verantwortlich, die die Spins antiparallel ausrichten. So können sich die Spins an den Ecken eines Dreiecks nicht zu beiden Nachbaratomen gleichzeitig antiparallel (antiferromagnetische Kopplung) ausrichten. Diese „Frustration“ sorgt dafür, dass die Spins selbst am absoluten Nullpunkt nicht zur Ruhe kommen und wie in einer Flüssigkeit beweglich bleiben. Die parallele Ausrichtung (ferromagnetische Kopplung) ist dagegen immer gut möglich. Entsprechend kamen bislang nur wenige Materialien für Spinflüssigkeiten in Frage.

Einkristalle mit komplexen magnetischen Wechselwirkungen
Nun hat ein HZB-Team um Prof. Dr. Bella Lake erstmalig am HZB Einkristalle aus Kalzium-Chrom-Oxid (Ca10Cr7O28 ) hergestellt und untersucht. Kalzium-Chrom-Oxid ist aus so genannten Kagomé-Gittern aufgebaut, die an japanische Flechtmuster aus Dreiecken und Sechsecken erinnern. Dabei bildet sich in Kalzium-Chrom-Oxid ein komplexes Set an magnetischen Wechselwirkungen: So gibt es nicht nur antiferromagnetische Kopplungen, sondern auch sehr starke ferromagnetische Wechselwirkungen, die nach dem gängigen Modell eine Spinflüssigkeit verhindern müssten. Experimente zeigten jedoch, dass die Spins in diesen Proben auch noch bei tiefsten Temperaturen von 20 Millikelvin hochbeweglich bleiben und sich wie eine Flüssigkeit verhalten. Die Unterschung erforderte eine Reihe von Messungen mit Neutronen und Myonen, und bot daher eine ideale Gelegenheit komplementäre wissenschaftliche Instrumente an verschiedenen Großforschungseinrichtungen weltweit zu nutzen.

Erste Messungen am MLZ
Die ersten Experimente mit Neutronen an einer polykristallinen Probe fanden am Instrument TOFTOF am Heinz Maier-Leibnitz Zentrum in Garching mit Dr. Giovanna Simeoni statt. Hier erhielten die Forscher erste Einblicke in dieses unübliche Verhalten. Diese Versuche dienten dazu, die genaue wissenschaftliche Fragestellung zu formulieren und die beste experimentelle Vorgehensweise für das gesamte Forschungsprojekt zu planen. “Die Genauigkeit und Verlässlichkeit des Ergebnisses, die durch weitere monokristalline Untersuchungen bestätigt wurden, resultierten aus der langen Entwicklungsarbeit am TOFTOF für die inelastische Neutronenstreuung und Untersuchung von Magnetismus bei extremen Bedingungen, z.B. die Kryo-Ausrüstung für sehr niedrige Temperaturen”, sagt Bella Lake.

Konkurrenz der Kräfte
Der theoretische Physiker Prof. Dr. Johannes Reuther, HZB, konnte nun mit Hilfe dieser experimentellen Hinweise das Bild von Spinflüssigkeiten entsprechend erweitern. Mit numerischen Simulationen zeigte er, wie die verschiedenen magnetischen Kopplungen in Kalzium-Chrom-Oxid miteinander konkurrieren und die Spins in dynamischer Bewegung halten.

Mehr Kandidaten für Spinflüssigkeiten
“Wir haben experimentell nachgewiesen, dass interessante Quantenzustände wie Spinflüssigkeiten auch in deutlich komplexeren Kristallen mit unterschiedlichen magnetischen Wechselwirkungen auftreten können”, sagt Dr. Christian Balz, Erstautor der Arbeit. Und Bella Lake erklärt: “Die Arbeit erweitert nicht nur das Verständnis von kristalliner Materie, sondern zeigt auch, dass es sehr viel mehr Kandidaten für Spinflüssigkeiten gibt, als erwartet. Dies könne in Zukunft für die Entwicklung von Quantencomputern interessant sein, denn Spinflüssigkeiten gelten als mögliche Bausteine für kleinste Informationseinheiten, die so genannten qubits.“

Text: Helmholtz-Zentrum Berlin

Originalpublikation:
Physical realization of a quantum spin liquid based on a novel frustration mechanism
Christian Balz, Bella Lake, Johannes Reuther, Hubertus Luetkens, Rico Schönemann, Thomas Herrmannsdörfer, Yogesh Singh, A.T.M. Nazmul Islam, Elisa M. Wheeler, Jose A. Rodriguez-Rivera, Tatiana Guidi, Giovanna G. Simeoni, Chris Baines, Hanjo Ryll
Nature Physics (2016, DOI: 10.1038/nphys3826

MLZ is a cooperation between:

Technische Universität München> Technische Universität MünchenHelmholtz-Zentrum Geesthacht> Helmholtz-Zentrum GeesthachtForschungszentrum Jülich> Forschungszentrum Jülich